
6-1

Chapter 6 Function Substitution for Monte Carlo
Algorithm Development

Although we have concentrated on event-based applications, the Monte Carlo method has a rich

history of application to various kinds of problems in mathematics, science and engineering,

especially those that present themselves with integro-differential equations. Although Monte

Carlo methods are sometimes categorized as numerical methods, they do not generally produce

estimates of continuous functions themselves, like most other numerical methods, but rather

estimates of weighted integrals of these functions.

The main reason for this emphasis on integrals is that the theoretical basis for Monte Carlo

methods is the Law of Large Numbers. Since in this law, functions appear inside integrals, the

typical applications have similarly been limited to the approximation of integrals of functions

(often referred to as “tallies”) rather than approximations of functions themselves, which is the

most common goal of traditional numerical methods.

But we can move beyond this limitation through the application of the Law of Large Numbers to

each point in the continuous domain of a function to be approximated. This approach leads to

Monte Carlo algorithms that deliver estimates of complete functions as output, rather than scalar

estimates of integrals of these functions; we can, if desired, then insert these approximations into

traditional integral tallies, but it is not necessary. Somewhat surprisingly—since this is simply a

new way of looking at an old subject—this approach uncovers new possibilities for the method

that were always there, but were covered up by the need to reorganize problems into integral

form.

6.1 Extension of the Law of Large Numbers to functions
The traditional basis for Monte Carlo processes is the weak form of the Law of Large Numbers.

When this law is applied to a function of one variable, the expected value or mean value of the

function, defined by:

 ˆ ˆ ˆ ˆ() () ()f E f x x f x dx


−

= =  (6-1)

where ()x̂ is a probability distribution function obeying:

ˆ ˆ() 0 for all

ˆ ˆ ˆ() 0 for all for which () 0

ˆ ˆ() 1

x x

x x f x

x dx








−

 

  

=

6-2

can be represented in probability as:

 
1

1
ˆ ˆ() lim ()

N

n
N

n

f E f x f x
N→

=

= =  (6-2)

if the nx̂ are samples taken using ˆ()x and the variance is finite, i.e.,

()
2

2 ˆ ˆ() ()x E f x f  = −  
  

 . (6-3)

As previously, a caret over a variable will denote a stochastic variable—i.e., a variable that is

sampled from a probability density function—and a subscript on a stochastic variable will denote

a particular sampled value of that variable.

A Monte Carlo algorithm consists of approximating this mean as closely as desired (i.e., through

increasing N) using a finite stream of samples of the function:

1

1
ˆ()

N

n

n

f f x
N =

  (6-4)

where

 1 2 3
ˆ ˆ ˆ ˆ ˆ

T

Nx x x x x , (6-5)

a vector of samples of x̂ selected from ˆ()x .

NOTE: From here on, I will generally stop writing the average of summation over

the N samples—I will assume you now know what to do with a sample—and just

write:

That is, the symbol  will be used to mean “…has the same expected value as…”.

Although this is only an approximation of the desired value, one of the strengths of the Monte

Carlo method is that it also delivers an estimate of the variance of f :

2

2 21

ˆ()
1 ˆˆ() lim

1

N

n

n

N

f x

x f
N N

 =

→

 
 
 = −

−  
  


 (6-6)

()ˆ
nf f x

6-3

Key point: If we apply the Law of Large Numbers to every point x in the domain of a function

()f x , the natural extension of Equations 1 and 2 is:

1

1
ˆ ˆ ˆ ˆ() () (,) lim (,)

N

n
N

n

f x x f x x dx f x x
N




→
=−

= =  (6-7)

with the result being an estimate of the entire function:

1

1
ˆ() (,)

N

n

n

f x f x x
N =

  (6-8)

with a corresponding estimate of the variance at each point in the domain:

2

2 21

ˆ(,)
1 ˆˆ(,) ()

1

N

n

n

f x x

x x f x
N N

 =

 
 
  −

−  
  


 . (6-9)

I will refer to the combination of approximation and PDF in Equation 6-7 as the “pair”

() ()()ˆ ˆ, ,x f x x --because a given ()xxf ˆ, will only work with a particular ()x̂ .

In Equations 6-8, ()xxf ˆ, is a stochastic function whose non-stochastic variable x is inherited

from the function dependency of ()xf and whose stochastic variable x̂ is introduced for our

purposes and is sampled using the probability distribution ()x̂ . If we are trying to approximate

a function with two variables (e.g., (),f x y then we would most likely need to have a stochastic

variable for each one of the original variables (e.g., ()ˆ ˆ, , ,f x y x y), with a corresponding two

dimensional PDF (e.g., ()ˆ ˆ,x y).

But how do we identify such a pair? The approach does not says, but limits itself to the

declaration that IF we can find a pair () ()()ˆ ˆ, ,x f x x that has the expected value of ()xf , then

that pair can serve as the basis of a Monte Carlo algorithm, as long as the variance is finite at all

values of x at which we need estimates of the function. (How the pair is found is an open

question.)

Notice, first of all, that the complexity of the item delivered has increased: Equation 6-4 delivers

a scalar estimate of f for each sample nx̂ , whereas Equation 6-7 delivers a function of x,

()nxxf ˆ, , for each sample.

Notice also that, although there is only a simple notation change between Equations 6-4 and 6-7,

we have moved where the known function is located: Equation 6-4 has it inside the integral, on

the right hand side; Equation 6-7 has it on the left hand side. This strongly affects the work that

6-4

we have to do to use it: Equation 6-4 clearly shows us the pair () ()()xxf ˆ,ˆ  to be used in the

Monte Carlo algorithm, but Equation 6-7 provides no guidance about how an appropriate pair

() ()()xxxf ˆ,ˆ,  is to be found, leaving us with the task of finding one. It simply assures us that, if

a pair can be found that satisfies the “continuous side” of Equation 6-6 (i.e., the first equality),

then that same pair can be used as the basis of a Monte Carlo estimate of ()xf by averaging

multiple functional samples for all values of x for which the variance is finite. The trick to

designing a Monte Carlo function approximation using Equation 6-7 is to find an appropriate

pair to base it on.

6.2 Random functions using the Dirac delta
Our first stochastic approximation is based on the Dirac delta. In terms of our mixed stochastic

function, ()xxf ˆ, , we note that:

() ()
()

()
()

ˆ
ˆ ˆ,

ˆ

f x
f x f x x x x

x



  − (6-10)

can easily be shown to satisfy the first equality of Equation 6, i.e.,:

()
()

()
() () () ()

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ() () (,)

ˆ

f x
f x x f x x dx x x x dx f x x x dx f x

x
   



  

− − −

 
= = − = − = 

 
  

as long as the probability distribution ()x̂ avoids singularities by having () 0ˆ x at all points

for which () 0ˆ xf . Therefore, according to the rules we established earlier, we can use it as the

basis of a Monte Carlo algorithm. But, before we do this, let’s take a look at what this

approximation looks like.

Example. Figure 4 shows the resulting approximation of the function

() xx eexf 102 −− −= , 10  x (“sample function”) for 100 random values of x̂

chosen uniformly from 0 to 1. As can be seen in the figure, the heights of the

Dirac deltas follow the shape of the curve because of the uniform distribution in x

(although they are a factor of 100 smaller).

6-5

Figure 4. Dirac delta approximation of sample function ((x)=1)

So the answer to the question “What does it look like?” is “Terrible.” We expect approximations

of functions (e.g., least squares fits) to look SOMETHING like the functions they are

approximating!

This “approximation” cannot even satisfy the simplest requirement of a function—that it delivers

a specific function value for any value of the argument within the domain. Because it contains

the Dirac delta, the stochastic function given by Equation 9 can only be practically used to

approximate ()xf inside integrals. (As an aside, this is the approximation of ()xf that is

implicit in most existing Monte Carlo algorithms, which also serves to explain why the functions

have to occur inside integrals.)

Then why do we do it? Because in its limited application (integration), evaluating the integral of

the approximation can be thousands or millions or billions of times faster than evaluating the

integral of the function itself. (If this is not true—then the thousands or millions or billions of

samples that it takes to get a good approximation to the integral would not be worth it.)

In practice, the tradeoff is NOT worth it for easy integrals, but becomes practical only for either

multidimensional integrations or for integrations where the integral is especially difficult—e.g.,

resonance cross section reaction rates.

Bottom Line of This Section

The purpose of this section has been to add a “middle step” to the Law of Large Numbers that

corresponds to the usual beginning point of other substitutions: Representing a functional

approximation that is then substituted for the function itself in integrals, equations, etc.

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 0.2 0.4 0.6 0.8 1
x

EXP(-2x)-EXP(-10x)

Zeroth Order Approximation

6-6

But why do it this way? Because it allows us two advantages:

1. It gives us a function substitution methodology that we can use to develop Monte Carlo

algorithms from given integrals, equations, etc.

2. By generalizing with Equation 6 (i.e., beyond the traditional Dirac delta approximation)

we will be able to develop more efficient Monte Carlo algorithms or tallies. (Track

length flux estimation estimation is one of these.)

For the next little while (i.e., while we are developing algorithms for solving equations), we will

be sticking with the Dirac delta approximation given in Equation 6-10, and apply it to an

increasingly complicated set of integral equations.

6.3 Solving integral equations
First we will apply what we have learned to the integral of know functions.

For the remaining cases in this chapter (and, likely, the majority of cases you will encounter in

the real world), we can apply Equation 6-10 to the simplest function we know of—a function

that is equal to 1 across its entire domain. This gives us:

()
()

()

ˆ
1

ˆ

x x
f x

x





−
=  (6-11)

This will allow us to convert continuous variables into sampled variables in a large number of

useful cases, simply by multiplying by one.

An additional identity that we will use is:

() () () ()ˆ ˆ ˆf x x x f x x x − = − (6-12)

What this allows us to do is to replace any occurrence of the variable x in a term containing a

Dirac delta of the form of the above equation with the selected value x̂ , leaving the only

occurrence of the continuous variable x inside the Dirac delta itself (which we be subsequently

dealt with by an integral). For example, if we take:

() 2xf x xe=

and convert the continuous variable to a sampled variable by multiplying by 1 (in the form of

Equation 6-11), we get;

6-7

()
()

() ()
()

ˆ2
2

ˆ ˆ
ˆ

ˆ ˆ

x
x

x x xe
f x xe x x

x x




 

 −
 = − 

  

A final notational change is introduced (to simplify the notation) to deal with the fact that we

will often encounter “left over” integrals of the sort:

()ˆ ˆ
b

a

x x dx −

You will remember that it is defined to be equation to:

() ()

ˆ1, if

ˆ ˆ ˆ ˆ1, if , ,

0, otherwise

b

a

a x b

x x dx b x a a x b

 


−  −    





We will define that last bit, ()ˆ, ,a x b , as a “convenience function” to save keystrokes. This can

be thought of a 1 if the order of the arguments is correction and 0 otherwise (we will not use the

branch that comes to -1).

In practice, we will try to eliminate the ()ˆ, ,a x b terms altogether by picking the domain of the

PDF ()x̂ to be restricted to ()ˆ ,x a b , allowing us to eliminate ()ˆ, ,na x b from the terms it is

in.

Our basic procedure will be to design a sampling algorithm for a continuous variable using three

steps:

1. In terms involving the variable (e.g., x) multiply the term by
()

()

ˆ

ˆ

n

n

x x

x





−
 (legal because

this has an expected value of one).

2. For all occurrences of the variable x not in the Dirac delta that we just added (but maybe

in OTHER Dirac deltas previously introduced), replace x with ˆ
nx .

3. If, after simplifying the integrals, we are left with simple integrals of Dirac deltas, replace

with our convenience function ()ˆ, ,na x b --where a and b are the upper and lower limits

of the integral.

Examples will make this clearer as we go on.

6-8

Example 1: Reproduce the scalar form of the Law of Large Numbers using our

new notation.

Answer: We will go through this step by step. The beginning of the LLN is:

 () () ()f E f x x f x dx


−

= = 

The only continuous variable is the dummy variable of integration. For Step 1 we

insert the full version of Equation 6-11:

()

1

ˆ1
1 lim

ˆ()

N
n

N
n n

x x

N x



→
=

−
= 

to get:

()

()

1

1

ˆ1
() () lim

ˆ()

ˆ1
 lim () ()

ˆ()

N
n

N
n n

N
n

N
n n

x x
f x f x dx

N x

x x
x f x dx

N x













→
=−



→
= −

 −
=  

 

−
=



 

For Step 2, we replace the x values with ˆ
nx to get:

()

1

ˆ1
ˆ ˆlim () ()

ˆ()

N
n

n n
N

n n

x x
f x f x dx

N x








→
= −

−
=  

which simplifies to:

()
1

1
ˆ ˆlim ()

N

n n
N

n

f f x x x dx
N




→
= −

= − 

Step 3 would, formally, replace the ()ˆx x dx


−

− with ()ˆ, ,x −  , but since

this is obviously equal to 1, we can write our final form:

1

1
ˆlim ()

N

n
N

n

f f x
N→

=

= 

6-9

This is the right-hand-side of the LLN, which completes the example.

Example 2: For our second example, we reproduce the formula for the averaging

method from Chapter 5 using our methodology.

Answer: In this method, we set out to solve:

()

b

a

I f x dx= 

by sampling x uniformly in the domain (a,b) and then scoring ˆ()()nf x b a− .

To show that this sampling algorithm follows from our procedure, we quickly run

through Steps 1 and 3 to get:

()

()

()

()

()
()

()
()

()

ˆ
()

ˆ

ˆ
ˆ()

ˆ

ˆ()
ˆ

ˆ

ˆ()
ˆ, ,

ˆ

b

a

b

n

na

b

n

n

na

b

n
n

n a

n
n

n

I f x dx

x x
f x dx

x

x x
f x dx

x

f x
x x dx

x

f x
a x b

x














=

 −
  

  

 −
=  

  

= −

= 









Since the procedure for the averaging method involves uniformly sampling x

between a and b, then we must have:

()
1

ˆ
nx

b a
 =

−

and

()ˆ, , 1na x b =

Substituting these two give us a score of:

()ˆ()nI f x b a −

which corresponds to the averaging method score.

6-10

Example 3: For our third simple example, we “finish” Example 2 to reproduce

the formula for the importance sampling method from Chapter 5 using our

methodology.

Answer: In this method, we set out to solve:

()

b

a

I f x dx= 

by sampling x using a guess, ()h x , for the unnormalized PDF.

Picking up at the point in the previous example where we had the score as:

()
()

ˆ()
ˆ, ,

ˆ
n

n

n

f x
I a x b

x
 

Since the normalized PDF would be:

()
ˆ ˆ() ()

ˆ

() h

n n
n b

a

h x h x
x

I
h x dx

 = =



and we would again sample x between a and b, therefore

()ˆ, , 1na x b =

then substitution would give us:

ˆ()

ˆ()

n
h

n

f x
I I

h x


which corresponds to the importance sampling method score.

Now that we have caught up to the event-based methods, let’s go after an integral equation.

Example 4: Develop an algorithm to sample the solution of the integral equation:

() 2

0

4

x

f x u du= +

6-11

Answer: This problem has two continuous variables, x and u, rather than the one

in the previous three examples. We can get after them in whatever order we

prefer. For this example, we will go after u first, by following our rules to get:

()

()

()

()
()

()
()

2

0

2

0

2

0

2

4

ˆ
4

ˆ

ˆ
ˆ 4

ˆ

ˆ
ˆ0, , 4

ˆ

x

x

n

n

x

n
n

n

n
n

n

f x u du

u u
u du

u

u
u u du

u

u
u x

u










= +

 −
 + 

  

= − +

=  +







Next we deal with the continuous variable x by again following our procedure:

() ()
()

()

()

()
()

()
()

()
()

2

ˆ

ˆ

ˆ
ˆ

ˆ

ˆ
ˆ ˆ0, , 4

ˆ
ˆ

ˆ

n

n

n

n

n

n
n n

n

n

n

x x
f x f x

x

f x
x x

x

u
u x

u
x x

x













 −
  

  

= −

 +

= −

The resulting formal solution is:

() ()ˆ
n nf x w x x −

where

()
()

()

2ˆ
ˆ ˆ0, , 4

ˆ

ˆ

n
n n

n

n

n

u
u x

u
w

x





 +

=

The preceding example results in an algorithm that we will refer to as a “general” algorithm,

since it still has the PDF(s) in the solution weights. Before it can be implemented in a solution,

these PDFs must be chosen; how they are chosen depends on how the samples will be used.

6-12

Using the preceding example results, if we were planning to integrate f(x) from 9 to 10, then the

result of this integration would be:

()

()

()
()

()
()

10

9

10

9

2

()

ˆ

ˆ9, ,10

ˆ
ˆ ˆ0, , 4

ˆ
ˆ9, ,10

ˆ

n n

n n

n
n n

n

n

n

I f x dx

w x x dx

w x

u
u x

u
x

x







=

 −

= 

 +

= 





A logical (but maybe not the most efficient) way to proceed would be to sample x uniformly

between 9 and 10, and sample u uniformly between 0 and the chosen value of x. Then the deltas

would disappear and the PDFs would be:

()

()

ˆ 1

1
ˆ

ˆ

n

n

n

x

u
x





=

=

This would result in a score of:

2ˆ ˆ 4n nI x u +

On the other-hand, if we were just interested in the value of f(10), there would be no reason to

really sample x at all. We always “sample” x at the value 10, and sample u uniformly between 0

and 10 to get:

() ()

()

ˆ 10

1
ˆ

10

n

n

x x

u

 



= −

=

This would result in a score of:

() 2ˆ10 10 4nf u +

Developing integral equations from differential equations

We really don’t encounter integral equations as often as differential equations.

But, we can often convert a differential equation into an integral equation. This is best shown

with a couple of examples.

6-13

Example 5: Sample the differential equation and boundary condition:

()
2 , (0) 4x

df x
e f

dx
= =

Answer: The basic technique is to integrate the differential equation FROM the

point where the boundary condition is known TO the desired values of x. So, if

we integrate the equation from 0 to some value x, we get:

()

() ()

() ()

()

0 0

0

0

0

2

0 2

0 2

4 2

x x

u

x

u

x

u

x

u

df u
du e du

du

f x f e du

f x f e du

f x e du

=

− =

= +

= +

 







If we follow through like the previous example by working with x first and then u (for a

slightly different approach resulting in the same answer), our development chain would look

like this:

6-14

()

()
()

()

()

()
()

()
()

()
()

()
()

()
()

()
()

0

ˆ

0

ˆ

0

ˆ

4 2

ˆ

ˆ

ˆ
ˆ

ˆ

4 2

ˆ
ˆ

ˆ
4 2

ˆ
ˆ

ˆ

ˆ ˆ4 2 0, ,
ˆ

ˆ
ˆ

n

n

n

x

u

n

n

n

n

n

x

u

n

n

x

nu

n

n

n

u

n n

n

n

n

f x e du

x x
f x

x

f x
x x

x

e du

x x
x

u u
e du

u
x x

x

e
u x

u
x x

x























= +

−

= −

+

= −

−
+

= −

+ 

= −







6-15

6.4 Solving linked sets of integral equations
There is nothing particularly new in this module except for practice and growing confidence in

your ability to work longer problems, where one Monte Carlo approximation feeds into another

one.

That is, if you have a string of linked integral equations (or can get them by integrating

differential equations):

()

() ()

()

()

u

v

a u f t dt

b v g u a u du

−

−

=

  =




 (6-25)

you attack it in pieces that “cascade” into each other:

()

()

()

()
()

()

()
()

()
()
()

()
()

()
()

()

()
()

ˆ

ˆ

()

ˆ
()

ˆ

ˆ()
ˆ

ˆ

ˆ
ˆ

ˆ

ˆ
ˆ

ˆ

ˆ
ˆ ˆ, ,

ˆ
ˆ

ˆ

n

n

u

n

n

n
n

n

u

n

n

u

n

n

n

n

n

n n

n

n

n

a u f t dt

u u
a u

u

a u
u u

u

f t dt

u u
u

t t
f t dt

t
u u

u

f t
t u

t
u u

u























−

−

−

=

−


= −

= −

−

= −

 −

= −







And then:

6-16

() ()

()
()

() ()

()
()

ˆ

()

ˆ()
ˆ

ˆ

ˆ
ˆ

n

v

n
n

n

v

n

n

b v g u a u du

b v
v v

v

g u a u du

v v
v







−

−

  =

 −

  

= −





At this point, we might be tempted to sample the u’ variable, but we don’t because we already

have an approximation for a(u’) that has a Dirac delta in it! So we just substitute it to get:

() ()

()
()

()

()
()

()

()
()

()
()

()
()
()

()

()
()

()
()

() () () ()

() () ()
()

ˆ

ˆ

ˆ()
ˆ

ˆ
ˆ ˆ, ,

ˆ
ˆ

ˆ

ˆ
ˆ

ˆ
ˆˆ ˆ, ,

ˆ
ˆ ˆ, ,

ˆ
ˆ

ˆ

ˆ ˆˆ ˆ ˆ ˆ, , , ,
ˆ

ˆ ˆ ˆ

n

n

v

n

n

n

n nv

n

n

n

n

n

n

n n n

n

n n

n

n

n

n n n n n n

n

n n n

g u a u du

b v v v
v

f t
t u

t
g u u u du

u

v v
v

f t
g u t u

t
u v

u
v v

v

g u f t t u u v
v v

t u v




















  

−

−

  

 −

 
 − 

 
  − 
 
 
 = −

 −

 −

= −

 −  −
= −





(Yes, I admit that the algebra is no fun. But the resulting algorithm is interesting to code and see

the results converge to the right answer.)

Besides problems that physically cascade (like radioactive decay chains), there are two other

common situations that generate cascades: higher-order differential equations and recurrence

integral equations (where the function on the left-hand side appears on the right as well). The

second of these we will deal with in the next section.

6-17

Higher-order differential equations can be made to cascade when the linked equation set comes

from reducing the nth order equation to n first-order equations (with the n boundary conditions

dispersed among the resulting linked equations).

Example: Create a Monte Carlo algorithm to solve:

() () () () () ; 0 1, 0 2; 0 3y x f x y y y  = = = =

Answer: We define:

() ()

() () ()

w x f x

u x w x f x

=

 = =

Use of these functions changes the original equation into:

() () ()

() () ()

() () ()

 ; 0 3

 ; 0 2

 ; 0 1

u x f x u

v x u x v

y x v x y

 = =

 = =

 = =

Integrating each of these first-order differential equations gives us:

() ()

() ()

() ()

0

0

0

3

2

1

x

x

x

u x f x dx

v x u x dx

y x v x dx

 = +

 = +

 = +







We use our methodology to sample the u(x) term, substituting this sample into the

integral of the v(x) term, and then substitute THIS sample into the y(x) term. The

algebra is tedious, but doable. The result is:

6-18

() ()
()
()

() ()
()
()

() ()
()

()

() ()
()

()

ˆ
ˆ ;

ˆ

ˆ ˆ3 0, ,
ˆ ;

ˆ

ˆ ˆ2 0, ,
ˆ ;

ˆ

ˆ ˆ1 0, ,
ˆ ;

ˆ

f

f f f

f

f f u

u u u

u

u u v

v v v

v

v v

f x
f x w x x w

x

w x x
u x w x x w

x

w x x
v x w x x w

x

w x x
y x w x x w

x













 − 

+ 
 − 

+ 
 − 

+ 
 − 

I could (if I wanted to) substitute all these subscripted weights to get the (final) w

weight in terms of ()f x and all the PDFs, but I won’t—since I usually code all

the intermediate weights just like the above equations (to minimize the likely

algebraic mistakes I would make combining them).

Of course, like we said before, this algorithm leaves you with ()y x in terms of

Dirac deltas—which are only useful if put into integrals—, so you must ultimately

be interested in some integral of ()y x to make this a useful exercise. But, I will

leave that part out of this Example.

6.5 Neumann decomposition
Sampling from recurring equations introduces a complexity. We cannot use the above procedure

because, if we try to follow it we will find ourselves unable to sample the occurrences of the

function on the right-hand side of the equation. That is, the procedure requires that we sample

from ()f x (i.e., on the right-hand side) in order to sample from ()f x (i.e., on the left-hand

side).

However, all is not lost. For linear occurrences of ()f x on the right-hand side, we can

“bootstrap” a solution by representing ()f x as an infinite Neumann series:

() () () ()0 1 2f x f x f x f x= + + +
, (6-28)

substituting this series for ()f x on BOTH sides of the equation, dividing the resulting equation

into a infinite set of coupled equations for the ()if x , and then sampling -- in turn -- the ()if x

. TOGETHER the samples for the individual ()if x would combine to form a single sample for

()f x .

6-19

Of course, this procedure has an infinite number of steps for each sample of ()f x , so it will have

to be adjusted, but—before worrying about that—let us first look at an example of how the

procedure so far would shape up.

Example: Develop an infinite sampling procedure for the recurring equation:

()
() (), 0 1, 0 3

df x
f x f x

dx
= =  

Answer: Integrating the differential equation over x from 0 to x (and applying the

boundary condition) gives us the recurring integral equation:

() ()
0

1 , 0 3

x

f x f u du x= +  

If we insert the infinite Neumann series for the function on both sides, we get:

() () () ()0 1 0 1

0 0

1

x x

f x f x f u du f u du+ + = + + + 

This can be decomposed into the following coupled equations:

()0 1f x =

() ()1 0

0

x

f x f u du= 

() ()1

0

x

n nf x f u du−= 

...

Since the function ()f x is the infinite sum of these ()nf x , the procedure to

sample from ()f x is:

3. Sample from
()0f x

 by:

a. Choosing an 0
ˆ

ix between 0 and 3. This involves using the normalized probability

distribution ()0 1/ 3x = .

b. Our sample of ()0f x is found from:

6-20

() ()0 0 0
ˆ

i if x w x x −

 with

()

()
0 0

0

0

ˆ 1
3

ˆ 1/ 3

i

i

i

f x
w

x
= = =

4. Sample from
()1f x

using the sample of
()0f x

by:

a. Choosing an 1
ˆ

ix between 0 and 3. Again, the normalized distribution is 1/3.

b. Setting 0
ˆ ˆ

iu x=

c. Our sample of ()1f x is found from:

() ()

()

()

()
()

() ()

1

1

1

1 1 1

ˆ

ˆ0

1 1 0
1 0 0

1 0

ˆ

0 0 0

0

0 0 1

ˆ

ˆ
ˆ3

ˆ 1/ 3

ˆ =3

ˆ ˆ3 if 0
 =

0 Otherwise

i

i

i

i i

x

x

i

i i i

i

x

i i

i i i

f x w x x

f u du
f x

w w x x du
x

w x x f u du

w x x








 −

 = =  − 

 − 

 








5. Sample from ()nf x in the analogous manner using the sample of ()1nf x− :

() ()

, 1 , 1

ˆ

ˆ ˆ3 if 0

0 Otherwise

in in in

i n i n in

in

f x w x x

w x x
w



− −

 −

 
= 


 Now that we have developed the "infinite procedure", let us make some observations.

1. The IF TEST in step 2.C is necessary because if the Dirac delta sample for

() ()0 0 0
ˆ

i if x w x x − lies outside the range of the integral, the integral -- and therefore

our sample of ()1f x —goes to zero because of the definition of Dirac delta integration.

2. The procedure is infinite in theory, but not infinite in practice because as soon as we pick

a value of ˆ
inx that is SMALLER than the one before it, then inw will go to zero. Once this

happens, of course, we can ignore the rest of the Neumann steps because their weights

will be zero as well.

6-21

3. We must remember that it is not a single sample of ()0f x

or ()1f x , etc., that constitutes

our sample of the function ()f x , but ALL OF THEM together. Therefore, the i'th

sample of ()f x is, formally:

() ()
0

ˆ
in in

n

f x w x x


=

 −

4. Therefore, if we improve our approximation of ()f x by taking N samples, the combined

best result would be:

() ()
1 0

1
ˆ

N

in in

i n

f x w x x
N




= =

 −

5. As a practical matter, point 3 means that our coding must collect data in "sample bins" --

i.e, which collect data from individual Neumann terms within a single sample -- and, at

the end of the sample, contribute from the "sample bins" to the overall "solution bins".

Chapter 6 Exercises

6-1. Write and run a code to sample the differential equation and boundary

condition:

() 2
, (2) 1

df x
f

dx x
= =

Use your code to find:

a. The value of the function at x=4; and

b. The integral of the function from 2 to 4.

6-2. Solve for ()
2

1

y x dx , given the equation:

() () ()2 ; 0 3, 0 0y x x y y = = =

6-3. Assume that at t=0, you have a single atom of species A. A decays to B with a

half-life of 1 second and B decays to C with a half-life of 0.5 seconds. (C is

stable.) Estimate the expected number of atoms of C at t=3 seconds?

Hint: In case you are rusty with the equations of decay, the integral

equations you should start with are:

6-22

() ()

()

0

0

()

()

()

A

B

t

t
t t

A

t

B

A t e

B t A t e dt

C t B t dt








−

− −

=

 =

 =





6-4. Use the drunken sailor algorithm to solve a diffusion problem. On a 5 cm x

5 cm grid with boundary conditions 1 (left edge), 2 (bottom), 3 (right), and 4

(top), use Monte Carlo (on a 0.5 cm grid) to estimate the value of the

function at the point (3.5, 1.5).

Answers to selected exercises
Chapter 6

6-1. a.
.28

2.38
N



 b.
1.59

3.55
N



6-2.
3.93

3.52
N



6-3. 0.77 (Standard deviation depends on PDF used)

6-4.
0.801

2.5
N



